

STABILITY ANALYSIS OF A DELAYED SIR MODEL WITH NONLINEAR

INCIDENCE RATE

SHIVRAM SHARMA¹, V. H. BADSHAH² & VANDANA GUPTA³

^{1,2}School of Studies in Mathematics Vikram University, Ujjain (M.P.), India ³Govt. Kalidas Girls' College, Ujjain (M.P.), India

ABSTRACT

In this paper a delayed SIR model with exponential demographic structure and the nonlinear incidence rate is formulated. We show if the basic reproductive number, denoted, R_0 , is less than unity, disease free equilibrium is stable. Moreover, we prove that $R_0 > 1$, the endemic equilibrium is locally stable without delay and the endemic equilibrium is stable if the delay is under some condition. Finally a numerical example is also included to illustrate the effectiveness of the proposed model.

KEYWORDS: SIR Epidemic Model, the Basic Reproduction Number, Stability, Time Delay, Hurwitz Criterion, Hopf Bifurcation